Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add filters

Database
Language
Document Type
Year range
1.
Vaccines (Basel) ; 10(8)2022 Aug 03.
Article in English | MEDLINE | ID: covidwho-1969552

ABSTRACT

Data on COVID-19 boosting vaccination in people living with HIV (PLWH) are scant. We investigated the immunogenicity and safety of the BNT162b2 homologous boosting vaccination. Anti-SARS-CoV-2 spike antibodies (LIAISON® SARS-CoV-2 S1/S2 IgG test, DiaSorin®), CD4+, CD8+ and viraemia were monitored at T0 (pre-vaccination), T1 (4 weeks after the second dose), T2 (pre-booster) and T3 (4 weeks after the booster dose). Humoral responses were evaluated according to sex, age, BMI, nadir and baseline CD4+ counts, as well as type of cART regimen. Forty-two subjects were included: the median age was 53 years (IQR: 48-61); the median time since HIV was 12.4 years (IQR: 6.5-18.3); the median nadir and baseline CD4+ counts were 165 (IQR: 104-291) and 687 cells/mm3 (IQR: 488-929), respectively. The booster dose was administered at a median of 5.5 months after the second dose. Median anti-SARS-CoV-2 IgG concentration had significantly decreased at T2 compared to T1 (107 vs. 377, p < 0.0001). Antibody levels elicited by the booster dose (median: 1580 AU/mL) were significantly higher compared with those of all the other time points (p < 0.0001). None of the investigated variables significantly affected antibody response induced by the booster dose. Local and systemic side-effects were referred by 23.8% and 14.3% of the subjects, respectively. One patient developed sensorineural hearing loss (SNHL) 24 h after boosting. He recovered auditory function upon endothympanic administration of corticosteroids. The BNT162b2 boosting vaccination in PLWH is safe and greatly increased the immune response with respect to the primary vaccination.

3.
Comput Struct Biotechnol J ; 20: 2558-2563, 2022.
Article in English | MEDLINE | ID: covidwho-1850922

ABSTRACT

The SARS-CoV-2 Variants of Concern tracking via Whole Genome Sequencing represents a pillar of public health measures for the containment of the pandemic. The ability to track down the lineage distribution on a local and global scale leads to a better understanding of immune escape and to adopting interventions to contain novel outbreaks. This scenario poses a challenge for NGS laboratories worldwide that are pressed to have both a faster turnaround time and a high-throughput processing of swabs for sequencing and analysis. In this study, we present an optimization of the Illumina COVID-seq protocol carried out on thousands of SARS-CoV-2 samples at the wet and dry level. We discuss the unique challenges related to processing hundreds of swabs per week such as the tradeoff between ultra-high sensitivity and negative contamination levels, cost efficiency and bioinformatics quality metrics.

SELECTION OF CITATIONS
SEARCH DETAIL